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Abstract 
In this paper we address the differences in managing risk for constant-maturity 
fixed-income indices and traditional fixed-income portfolios.  Traditional risk 
measures include duration, however the consistent turn over and re-investment 
nature of constant-maturity indices creates a complicated relationship between 
yield and duration.  We derive that Sharpe optimal portfolios can be found 
based on a simple yield-to-risk framework where risk is quantified as the 
volatility of the underlying driving interest rate factor scaled by duration.
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Introduction 
The proliferation of ETFs has expanded the palette of investible securities for 
retail investors, especially in fixed-income where investors can access fixed-
income sectors including domestic and international government bonds, 
mortgage-backed securities, corporate bonds, inflation-linked bonds and high 
yield.  With present fears that a 30-year bull market in fixed-income is rapidly 
coming to a close, most investors have become acquainted with the notion of 
duration: a measure of the percentage decrease in a bond’s value for a 100 
basis point rise in interest rates.  However, constant-maturity fixed-income ETFs 
are unique in that they constantly turn over their underlying holdings and re-
purchase new on-the-run securities, creating a complicated relationship 
between yield and duration that defines the ETF’s sensitivity to changes in 
interest rates.  In this paper, we explore this relationship and derive the yield-to-
risk measure that we believe allows for the construction of Sharpe optimal 
portfolios with these ETFs. 
 

 
A Simplified Constant-Maturity Index 
To develop a simple heuristic, we will utilize a simplified constant-maturity index 
construction methodology.  Usually, the basic methodology for a constant 
maturity index works like so: 
 

1. Purchase the current on-the-run bond 
2. While holding the bond, re-invest any coupons distributed 
3. Sell the bond and purchase the new on-the-run bond 

 
In practice, many constant maturity indices turn over every month and purchase 
bonds with semi-annual coupons, so coupons are rarely collected and re-
invested. 
 
Our methodology will be simpler: we purchase our bond at the beginning of the 
period and receive our coupon at the end of the period, at which time we sell 
our bond and purchase the new on-the-run bond.  We also assume that any 
changes to the prevailing yield occur at the end of the period.   
 
Throughout this paper, we use the notation 𝐵!,! to denote the price of a bond at 

time j that was purchased at time i.  
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For simplicity in this paper, we will assume that all bonds are bought at par, 
where par equals $1: 
 

𝐵!,! = $1 
 
By letting the bond equal $1 at point of purchase, we can treat yield (written 
herein as 𝑦!) and coupon as equivalents.  This simplified construct allows us to 
avoid mid-period pricing issues such as sensitivity to time-to-maturity that will 
occur when yield-to-maturity no longer equals the coupon rate. 
 
 
Now let us define our wealth (or, equivalently, constant-maturity index) process: 
 

𝑤! =   𝑤!!! − 𝑛!!!𝐵!!!,!!! + 𝑛!!!𝑦!!!∆𝑡 + 𝑛!!!𝐵!!!,! 
 
where  𝑛!!! is the number of bonds bought at time t-1, 𝑦!!! is the yield at time t-
1 and ∆𝑡 is the time in years between t-1 and t.  In this expression, the first term 
is the wealth at t-1, the second term is the total purchase price for bonds at t-1, 
the third term is the interest income earned during the period and the fourth 
term is the ending value of the bonds bought at t-1.   
 
If we assume we fully invest our wealth at each step, we can rewrite our number 
of shares as:  
 

𝑛! =
𝑤!
𝐵!,!

 

 
 
Which allows us to re-write our change in wealth as: 
 

∆𝑤! =   −𝑤!!! + 𝑤!!!𝑦!!!∆𝑡 + 𝑤!!!𝐵!!!,! 
 
If we define the price of a bond as a function of yield and time, we can use 
Taylor’s theorem to approximate the change in price as: 
 

∆𝑃 =
𝛿𝑃
𝛿𝑡 ∆𝑡 +   

𝛿𝑃
𝛿𝑦 ∆𝑦 +

1
2
𝛿!𝑃
𝛿𝑦! (∆𝑦)

! +⋯ 
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Since we are assuming that we purchased the bond at par, and therefore yield-

to-maturity is equal to the coupon rate, we know that 
!"
!"
= 01.  Therefore, for 

small changes in yield, we can approximate the change as: 
 

∆𝑃 ≈
𝛿𝑃
𝛿𝑦 ∆𝑦 

 
Dividing both sides by price, we get the familiar derivation of modified duration 
(D): 
 

∆𝑃
𝑃 ≈

1
𝑃
𝛿𝑃
𝛿𝑦 ∆𝑦 = −𝐷∆𝑦 

 
 

This is the familiar derivation of bond duration (D), which allows us to re-write 
(again, with the convenience of assuming that 𝐵!,! = 𝑃 = 1): 
 

𝐵!,!!! =   1− 𝐷∆𝑦!!! 
 
Therefore, our above change in wealth is: 
 

∆𝑤! =   −𝑤!!! + 𝑤!!!𝑦!!!∆𝑡 + 𝑤!!!(1− 𝐷×(𝑦! − 𝑦!!!)) 
 
Which reduces to, 
 

∆𝑤! =   𝑤!!!(𝑦!!!∆𝑡 − 𝐷× 𝑦! − 𝑦!!! ) 
 
 

Constructing a Portfolio 
Let us first assume that 𝑦! is a random walk with zero drift (i.e. 

∆𝑦!!∆!~𝑁(0,𝜎!!∆𝑡)); we then know that: 
 

∆𝑤!!∆!
𝑤!

~𝑁(𝑦!∆𝑡,𝐷!𝜎!!∆𝑡) 
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We are provided with a fairly intuitive interpretation of volatility in our wealth 
process: it is a direct function of the duration of the bonds we are purchasing 
and the volatility of the underlying yield. 
 
Up until this point, we’ve spoken explicitly about changes in yield.  Let us now 
consider a portfolio of constant maturity bond indices (including nominal of all 
durations, credit-based and inflation-linked): how would we construct the 
maximum Sharpe ratio portfolio?  Let us make a simplifying assumption that all 
yields are simply a fixed spread level, 𝑠, above a singular driving interest rate 
(note that this is not a totally outrageous assumption, as level drives a significant 
portion of yield-curve changes and over short enough periods we can likely 
claim ceteris paribus).  To solve for the maximum Sharpe ratio portfolio we 
would be looking to solve2: 
 

max
!

𝑤!(𝑟 + 𝑠)

𝑤!(𝜎!!𝐷𝐷!)𝑤
 

 
Subject to: 
 

𝑤!𝑤 = 1 
∀𝑤! ≥ 0 

 
Since, in this toy example, the constant-maturity indices are all driven by the 
same interest rate, they are going to be perfectly correlated. Therefore, the 
simple solution is to invest 100% of your assets in the security with the 
maximum yield-to-risk, where risk is measured as duration-scaled-interest-
volatility (or, as we saw above, volatility of the index’s linear returns).   
 
Obviously our toy example is too simple.  But if we define 𝜎! = 𝐷𝜎!, we can 
generalize our max Sharpe ratio problem to: 
 

max
!

𝑤!𝑦
𝑤!∑!𝑤
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  Assuming	
  0%	
  risk-­‐free	
  rate	
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Subject to: 
 

𝑤!𝑤 = 1 
∀𝑤! ≥ 0 

 
In other words, our optimal Sharpe ratio is our optimal yield-to-risk portfolio.   
 
 

Taking a Simplified View on Rate Changes 
What happens if we do have a view on where rates are going?  Consider 

defining 𝑦! as a random walk with drift 𝜇! (implying ∆𝑦!!∆!~𝑁(𝜇!∆𝑡,𝜎!!∆𝑡))).  Our 
change in wealth then becomes: 
 

∆𝑤!!∆!
𝑤!

~𝑁((𝑦! − 𝐷𝜇!)∆𝑡,𝐷!𝜎!!∆𝑡) 

 
What we find is that our yield is simply shifted by our duration-scaled drift factor; 
i.e. how much of the yield will be left after our expected bond price loss is 
accounted for.  Our solution for our maximum Sharpe portfolio remains much 
the same, except we define 𝑦 = 𝑦 − 𝐷𝜇!. 
 
 

A More Realistic Rate Model 
Let us assume a more complicated model for 𝑦!; in particular, let us assume that 
𝑦! is a discrete-time Vasicek model: 
 

𝑦!!∆! =   𝑦! + 𝑎 𝑏 − 𝑦! ∆𝑡 + 𝜎! ∆𝑡𝑍!!∆! 
 
Substituting, we find that: 
 

∆𝑤!!∆!
𝑤!

~𝑁( 𝑦! 1+ 𝑎𝐷 − 𝑎𝑏𝐷 ∆𝑡,𝐷!𝜎!!∆𝑡) 

 
Once again we find the solution to our maximum Sharpe ratio portfolio will be 
one relying on yield and volatility; this time, our yield will be scaled and 
differenced by our expectations for how quickly, “a”, it will revert back to its 
long-term mean level, “b”. 
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Theory & Reality 
In our toy example, we’ve derived that yield-to-risk can lead to the Sharpe 
optimal portfolio; but reality is far messier than theory.  How well does our toy 
translate to reality? 
 
To test, we used daily interest rates (from the St. Louis Federal Reserve’s 
Economic Data (“FRED”) platform) from 1993 for 3-month, 6-month, 1 Year, 2 
Year, 3 Year, 5 Year, 7 Year, 10 Year and 20 Year Treasury bonds.  The rates 
were then transformed into constant-maturity price indices, assuming semi-
annual coupons and monthly turnover (with the exception of 3-month rates, 
which assume quarterly coupons).   
 
We then construct nine portfolios with increasing yield-to-risk ratios.  The first 
portfolio will always have the lowest yield-to-risk ratio while the ninth portfolio 
will always have the highest yield-to-risk ratio.  Portfolio constituents are 
rebalanced on a monthly basis so that we allow enough time for the factor to 
express itself.  To avoid sampling bias, each index is broken into four equal 
buckets.  On the first week, the first bucket is allocated with respect to that 
week’s yield-to-risk rankings; on the second week, the second bucket is 
allocated with respect to that week’s yield-to-risk rankings; et cetera.  On the 
fifth week, the cycle restarts with the first bucket.  By using this methodology, 
we avoid potential sampling bias by sampling at multiple points each month 
while also maintaining the desired holding period of a month. 
 
We also construct an “optimized” portfolio that creates a maximum yield-to-risk 
portfolio utilizing all available underlying indices.  Furthermore, the optimization 
process takes advantage of covariance information, recognizing that rate 
changes along the curve are not all purely linear shifts, but also changes as 
functions of slope and curvature. 
 
The results follow: 
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Testing with ETFs 
In a second test, we utilize various fixed-income ETFs.  The first major difference 
is that instead of utilizing known forward rates, we approximate yield with 
exponentially weighted trailing 252-day dividend yield.  The second major 
difference is the impact of correlations on portfolio construction, which we will 
touch upon later.  The ETFs utilized are: SHY, IEI, IEF, TLH, TLT, CSJ, LQD, 
SHYG, HYG, STIP and TIP.  As the ETF data becomes available, it is utilized in 
the construction of the portfolios. 
 
In our toy model, we assume yield and interest rates are interchangeable, and 
therefore, in the short-term, duration risk is the only risk that drives changes in 
bond prices.  In reality, credit and inflation spreads are significant driving factors 
in credit-based and inflation-linked bond prices.  Therefore, an underlying 
assumption in our model is that duration is replaced by a general linear factor 
that captures the impact on bond price due to a change in yield, whether that 
change in yield is due to rate changes, credit-spread changes, or inflation-
spread changes.  We also assume that the dividends paid by these ETFs are a 
valid proxy for the yields from the underlying securities. 
 
Furthermore, many of these ETFs are not explicitly constant maturity (e.g. LQD 
and HYG) and their underlying securities are not necessarily consistent 
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throughout time.  For example, whereas a 7-10 year constant-maturity Treasury 
index will always sell U.S. Treasuries to purchase U.S. Treasuries, the Markit 
iBoxx USD Liquid High Yield Index may sell a basket of bonds from one group 
of issuers and purchase a basket of bonds from a completely separate group of 
issuers.  In our model we gloss over these details and assume that 
diversification allows us to treat these baskets as if they were a singular, 
summary bond representing the entire market and that the maturity of this bond 
is equivalent to the weighted average maturity of the index (also, therefore, 
assuming that the weighted average maturity remains fairly consistent 
throughout time).   
 
The test process had to change due to the high impact that correlations will 
have on the portfolio construction process with these ETFs.  By only sorting 
based on individual yield-to-risk, we could theoretically create a low yield-to-risk 
portfolio from two high yield-to-risk securities with negative correlation to each 
other but label it as high yield-to-risk.  Therefore, any naïve combination of 
individual securities may lead to incorrect quantile rankings.  Furthermore, a 
naïve ranking process may lead to quantiles that are sensitive to different risk 
factors, and therefore the results would be highly path dependent upon which 
risks were realized during the backtest period. 
 
The test was designed such that at each point in time, ten portfolios are 
constructed, each with a yield target a fixed excess level above the current 
minimum yield offered.  The target yield levels are equally spaced between the 
current minimum yield offered and the current maximum yield offered and each 
portfolio seeks to match this yield target with the minimum volatility level 
possible.  Ten quantile-based portfolios are then constructed based on the 
yield-to-risk of the target excess yield portfolios. 
 
The results follow: 
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While the results are not as clear-cut as the rate-based constant-maturity index 
test, there is a significant (5% level) increase in Sharpe ratio between higher 
yield-to-risk portfolios versus lower yield-to-risk portfolios.   
 
 

Conclusion 
With the fear of rising interest rates, many investors have become familiar with 
duration risk.  However, risk management of constant maturity fixed-income 
indices is more complex than simply minimizing duration exposure. Constant-
maturity fixed-income portfolios are unique in that they frequently turn over their 
holdings, reinvesting capital and coupons into new on-the-run bonds, creating a 
complicated relationship between yield and duration.   
 
In this paper we have derived that subject to certain simplifying assumptions the 
Sharpe optimal portfolios will maximize their yield-to-risk ratio, where risk is 
measured by the volatility of the underlying driving interest-rate factor scaled by 
duration – or, equivalently, the volatility of the constant maturity index.   
 
We then derive different manipulations to the yield-to-risk framework that can be 
made based on underlying assumptions and beliefs of the driving interest rate 
factor.    
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Finally, we explore whether the toy model derived in this paper holds for live 
market data, from rate-based constant-maturity indices to ETFs.  We find that 
our results are significant at a 5% level for both rate-based constant-maturity 
indices and portfolios of ETFs.  
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Appendix A 

 
The basic bond value equation is: 
 

𝐵 𝑇, 𝑟 =
𝐶
𝑟 × 1−

1
1+ 𝑟 ! +

𝑃
1+ 𝑟 ! 

 
Where 𝑃 is the principal, 𝐶 is the coupon, 𝑇 is the time-to-maturity and 𝑟 is the 
discount rate yield-to-maturity.  𝐶 is also defined as 𝑦×𝑃, where 𝑦 is the coupon 
interest rate.   
 
Taking the partial derivative with respect to 𝑇, we get:  
 

𝑑𝐵
𝑑𝑇 = −

𝐶
𝑟

1
1+ 𝑟 !   ln 1+ 𝑟 +

𝑃
1+ 𝑟 ! ln 1+ 𝑟        

 
Purchasing the bond at par means that 𝑦 = 𝑟, which reduces the equation to: 
 

𝑑𝐵
𝑑𝑇 = −

𝑃
1+ 𝑟 !   ln 1+ 𝑟 +

𝑃
1+ 𝑟 ! ln 1+ 𝑟 = 0       

 

When a bond is trading at par 𝑦 = 𝑟 and therefore 
!"
!"
= 0.  Note that this 

relationship only holds from one coupon payment date to the following coupon 
payment date due to accrued interest.   
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